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This study addresses the application of n hybrid vibration absorbers (HVAs) to a #exible
structure. The HVAs assign tunable zeros and poles to a MIMO closed-loop #exible system
and match it to a prototype transfer function with prescribed zeros and poles. Simulation
results are presented to demonstrate the performance of the proposed design method.
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1. INTRODUCTION

A dynamic vibration absorber (DVA) is a sprung}mass that was used for vibration
absorption from as early as 1909 [1]. It is still an e!ective vibration control device [2, 3]
nowadays, with di!erent modi"cations and improvements. Some researchers adjust the
absorption frequency by on-line tuning of the mass (inertia) or sti!ness [4}6]. Others add
an additional actuation force to a DVA to form a hybrid vibration absorber (HVA) [7}11].
The performance of a HVA depends on its actuation force. Di!erent algorithms are
available for HVA synthesis, ranging from neural networks [8], delayed resonator [9] to
modal feedback controllers [10}14].

A possible HVA synthesis is to place closed-loop poles by modal feedback. While this is
an e!ective control strategy for #exible structures, it could be improved in at least two
aspects. First, most pole-placement controllers do not pay much attention to closed-loop
zeros though zeros mean absorption band or valleys. Second, modal feedback requires
exact mode functions to recover the modal states from sensor signals. In practice, exact
knowledge of mode functions may not be conveniently available, or not accurate enough. It
is therefore desirable to design HVAs to use sensor signals directly without recovering
modal states. Such HVA schemes are called &&simple HVA'' here to distinguish from modal
HVAs.

There are many interesting simple HVA schemes. A delayed resonator by Olgac and
Holm-Hansen [9] tunes the attenuation frequency by adjusting a delayed feedback term.
A double-resonance absorber by Burdisso and Heilnann [15] and a band-pass one by
Filipovic and Schroder [16] present revolutionary ways to widen the attenuation valleys.
Recently, a simple HVA was proposed [17] to place tunable zeros and poles for broadband
absorption.

Unlike modal HVAs, a simple HVA usually absorbs vibration at a single point. Its
analysis is based on a lumped-parameter model. This study addresses the application of
n simple HVAs to #exible structures for vibration absorption in multiple points. Based on
a distributed-parameter model, it can be shown that n simple HVAs can place zeros and
poles to a #exible structure for vibration absorption in multiple points. The number of
0022-460X/01/150797#11 $35.00/0 ( 2001 Academic Press
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HVAs (n) is independent of, some time much smaller than, the number of modes (m) to be
attenuated. Feedback signals are measured at n coupling points, without using exact mode
functions to recover modal states. It saves on-line computations, avoids modal error and
requires fewer sensors. A simulation is conducted to demonstrate the absorption
performance.

2. MATHEMATICAL MODEL

This study focuses on the design and application of n HVAs to a #exible structure for
vibration absorption in n points. A simple example of the #exible structure
would be a cantilever beam shown in Figure 1, where w (x, t) represents displacement of the
distributed-parameter beam while Mw

j
Nn
j/1

represent displacement of n lumped-parameter
HVAs. It is assumed that the beam satis"es the Euler}Bernoulli hypothesis for displacement
and Kelvin}Voigt damping hypothesis. All displacement variables are measured from the
equilibrium states. The dynamic equations of the composite structure are given by
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plus a proper set of initial/boundary conditions. In equation (1a), d(x!x
j
) is a Dirac delta

function and x
j

the coupling co-ordinate of the jth HVA, E, o and C
d

are the Young's
modulus, linear mass density and damping coe$cients of the beam, d (t) represents
a disturbance not drawn explicitly in Figure 1. The HVAs are sprung-masses each with an
additional actuator. Equation (1b) models the coupling force between the #exible structure
and the jth HVA where f

aj
is a force synthesized by the actuator, m

j
, v

j
and k

j
denote the

corresponding mass, viscous friction and spring constants. A simple Newton's law in
equation (1c) represents the dynamics of the jth HVA.

The vibration of this system is described by vector wT"[w (t, x), w
1
,2, w

n
]. According

to Banks et al. [18], it is almost impossible to "nd a complete set of orthonormal mode
functions to decompose w in modal space if the actuators are all shut-o! ( f

aj
"0 for

1)j)n). This is one of the di$culties of analyzing a composite system with discrete and
continuous vibration bodies. The problem becomes more complicated if the actuators
generate active forces f

aj
for 1)j)n. Despite these di$culties, the classical modal theory

still allows one to "nd a complete set of orthonormal mode functions M/
i
(x)N=

i/1
and
Figure 1. A cantilever beam coupled with n HVAs.
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decompose w (t, x) (instead of an entire vector w) in modal space. Substituting M/
i
(x)N=

i/1
into equation (1a), one obtains

gK
i
#2f

i
u

i
gR
i
#u2

i
g
i
"/

i
(x

d
)d#

n
+
j/1

/
i
(x

j
) f

j
, 1)i(R, (2a)

f
j
"v

j
[wR

j
!wR (t, x

j
)]#k

j
[w

j
!w(t, x

j
)]#f

aj
, 1)j)n, (2b)

m
j
wK
j
"!f

j
, (2c)

where f
i
and u

i
represent the damping ratio and resonance frequency for the ith mode. The

local modal decomposition is made possible by inner products
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For a general #exible structure, the above inner products would be volume integrals over
the continuous subsystem but still avoiding the discrete variables. This is a deliberate e!ort
to avoid the extreme di$culty investigated by Banks et al. [18] when the inner products
involve all displacement variables simultaneously. By avoiding the discrete variables in
deriving equation (2a), one can still apply the classical modal theory without contradicting
Banks et al. [18]. As a matter of fact, every mode co-ordinate g

i
(t) is strongly cross-coupled

with all discrete variables Mw
j
Nn
j/1

via the coupling forces M f
j
Nn
j/1

, as indicated by equation
(2a). While M/

i
(x)N=

i/1
is a complete set of orthonormal mode functions for continuous

variable w(t, x), it does not imply, nor depend on, the existence of orthonormal
decomposition for the entire system vector wT"[w (t, x), w

1
,2 , w

n
]. Derivation of

equation (2a) is merely a di!erent analytical approach without changing the validity of
equation (1a).

While equation (1a) describes an 1-D #exible beam, the methodology presented here can
be applied to a general 3-D #exible structure as well. From this point of view, equation
(2a)}(2c) describe a set of general dynamic equations for a #exible structure after applying
modal decomposition to the continuous subsystem while leaving the discrete variables
unchanged. Of course, there are many other analysis methods in the literature. Some are
more advanced in the modelling and analysis of #exible structures coupled with rigid
bodies. The focus here, however, is how to synthesize the active coupling force f

aj
and place

closed-loop zeros and poles. While equation (2a) seems to depend on the existence of mode
functions for the continuous subsystem, the design procedures to be developed here do not
use these mode functions explicitly. It will be made clear that equations (2a)}(2c) are used to
establish a useful property of the transfer functions. In reality, these transfer functions are
identi"ed from measurement data instead of being derived analytically. The next section
will present a HVA design procedure that depends on the measured transfer functions
instead of model (2a)}(2c). Meanwhile this section addresses the property of transfer
functions. One may express equation (2a) in the Laplace transform domain as
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It implies a spatial-temporal expression for the continuous subsystem
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The truncation to the "rst m modes is a well-accepted engineering approximation.
A vector}matrix form is now available for equation (3) as
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is the mode matrix.

All temporal signals in equation (4) are expressed in Laplace transform domain. For HVA
design, one may introduce the transfer functions
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These transfer functions render a concise expression of equation (4) as
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[19], D
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(s) and N
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(s) are assumed to be available by analysis, measurement or o!-line

identi"cation.
There are many available pole-placement controllers for active damping of #exible

structures like equation (6). Some use a lumped-parameter system with a number of
sprung-masses to approximate a distributed-parameter system. For those HVA designs that
are based on the distributed-parameter models, a modal state vector [g

1
g
2

2 g
m
]T is

usually required whose components must be computed by modal "lters
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are displacements measured at co-ordinates Mx

k
NK
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. To achieve
a reasonably accurate approximation, the number of sensors (K) must be su$ciently large
or at least equal to m. That requires a large number of sensors. Generally, modal "lters
require exact knowledge of mode functions, which may not be conveniently available or not
accurate enough in practice. The present approach, on the other hand, does not use mode
functions explicitly, though it needs equation (5) to show a useful property of the transfer
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functions and equation (5) must be derived from equation (2a). In real implementations,
there may be practical restrictions on the total number of sensors. Such problems could
cause inevitable errors in the modal vector. Using transfer functions G

d
(s) and G

f
(s) and

direct feedback Mw (x
k
, t)NK

k/1
, the proposed HVA scheme saves on-line computations,

reduces sensors and avoids potential modal errors.

3. HVA DESIGN

Assume, without loss of generality, that m
j
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a
, v

j
"v

a
and k
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a
for 1)j)n. Then

a relatively simple design scheme is to synthesize f
aj

individually for each HVA. Expressing
equation (2b) in Laplace transform domain, one can write
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If the actuators are shut-o! (A(s)"0), then equation (9) becomes G
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where B (s) contributes a pair of closed-loop zeros for vibration absorption. That is the e!ect
of passive DVAs. The proposed HVAs select i"k
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exactly the same way as passive

DVAs to tune an absorption frequency. A drawback of the DVAs, however, is the possible
detrimental e!ect to P(s)"B(s)D
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(s) whose roots are altered by the

DVAs. When applied to a lumped-parameter system, a DVA could cause closed-loop peaks
[2, 3] in other frequencies. For distributed-parameter systems, the e!ect of a DVA is more
di$cult to predict [19]. The problem becomes more complicated when multiple DVAs are
involved. The main objective of the HVAs is to shift the roots of P (s) away from the
imaginary axis and place more closed-loop zeros to attenuate vibration in other frequencies.
Such a concept has been applied to lumped-parameter system successfully [17] with a single
HVA. This study addresses the application of n HVAs to a #exible system to absorb
vibration in multiple points.
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for all u when minM2f
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matrix. The actuator transfer function is given by
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The leading coe$cient of M(s) is an identity I since both P (s) and C (s) are monic.
With C(s)B (s) being a closed-loop multiplier, the HVAs place l#2 tunable zeros in the

closed-loop transfer function. To place l#2m#2 closed-loop poles to equation (11), the
design method needs a scalar prototype denominator.
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The objective of zero/pole placement is now achieved for multi-point vibration
absorption in a #exible structure. The assumption of the proposed scheme is availability of
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closed-loop transfer function. In any of the cases, all poles and some zeros are tunable by
a designer by prescribing B (s), C(s) and E(s) respectively. Roots of these scalar polynomials
are restricted in the negative half of the complex plane to ensure a stable closed loop. Roots
of B (s) and C(s), however, can be close to the imaginary axis to form sharp attenuation
valleys or stop bands.

4. IMPLEMENTATION
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integral can be very fast and accurate. The technique has been applied to switch capacitor
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circuits to implement high order analog "lters successfully. It is readily applicable to HVAs
as well.

A third concern is the double integral in equation (10). This can be eliminated by setting
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under damping of these polynomials in real implementations. Since s2C(s) (sv
a
#k

a
)N

f
(s)

only contribute to s2 or higher, the zero order coe$cient of M(s) is a scalar multiplied to an

identity: M
l`2m`2

"i<1@2
i/1

b2
i

<m
i/1

u2
i
I"m

l`2m`2
I. Here Ji, Mb

i
N1@2
i/1

are prescribed
roots of B (s) and C(s) to be placed as closed-loop zeros. D

p
(s) and Mu

i
Nm
i/1

are available by
assumption. Without losing generality, one may choose

E (s)"
1@2
<
i/1

(s2#2b
i
s#b2

i
) (s2#2Jis#k )

m
<
i/1

(s2#2u
i
s#u2

i
)

whose zero order coe$cient is e
l`2m`2

"i<1@2
i/1

b2
i

<m
i/1

u2
i
I"m

l`2m`2
for whatever

damping ratio introduced to E (s). Therefore, equation (13) holds when A
4
"R~1

l`2m~2
(e

l`2m`2
!m

l`2m`2
) I"0. One can follow the procedures of Section 3 to place the

prescribed zeros and poles without the double integral.
Section 3 assumes identical spring}mass-viscous coe$cients to avoid distraction in

deriving A(s). There is, in fact, no problem applying n HVAs with di!erent
spring}mass-viscous coe$cients. Only the coupling force vector becomes

f"!C
s2

B
i
(s)D M[sv

i
#k

i
]I#A(s)Nw

p
, (16)

where [s2/B
i
(s)] and [sv

i
#k

i
] are diagonal matrices with diagonal elements s2/B

i
(s) and

sv
i
#k

i
respectively; B

i
(s)"s2#sp

i
#i

i
represents resonance of the ith sprung-mass with

coe$cients p
i
"v

i
/m

i
and i

i
"k

i
/m

i
. Substituting equation (16) into equation (6), the

closed-loop transfer function of the #exible system can be derived as

G
c
(s)"MPM (s)#s2N

f
(s) [G

i
(s)]A(s)N~1BM (s)N

d
(s), (17)

where PM (s)"BM (s)D
p
(s)I#s2N

f
(s) [G

i
(s) (sv

i
#k

i
)] is a matrix polynomial of degree

2m#2n; BM (s)"<n
i/1

B
i
(s); [G

i
(s) (sv

i
#k

i
)] and [G

i
(s)] are diagonal matrices with diagonal

elements G
i
(s)"BM (s)/B

i
(s) for 1)i)n. The di!erences between equations (9) and (17) are

P(s) versus PM (s) and B (s) versus BM (s). Instead of absorbing vibration at a single frequency,
BM (s) allows the HVAs to absorb vibration at n-frequencies in n points. The design of A (s) is
very similar to Section 3 with N~1

f
(s) replaced by [G

i
(s)]~1N~1

f
(s).

In the absence of A
4
, equation (10) becomes sort of a PID controller with its proportional

gain replaced by a high order matrix "lter (1/C(s))N~1
f

(s)H (s), or 1/C(s)G
i
(s)]~1N~1

f
(s)H(s)

if the HVA's have di!erent spring constants. The HVA transfer function may be further
simpli"ed by selecting C(s)"1. In that case, the zeros of B (s) or BM (s) absorb vibration and
A(s) damps the closed-loop poles. A simulation example is presented in the next section to
demonstrate the performance.
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5. SIMULATION RESULTS

The proposed scheme is veri"ed by a simulation test. Only n"1 HVA is applied to
a #exible 1-D cantilever beam. With n"1 sensor collocating with a HVA, it is not possible
to recover m'1 modal states by any modal HVAs. Yet the proposed HVA is able to damp
m'1 modes. The simulation also demonstrates that the procedures of Section 3 are
applicable to a special case with n"1. The only modi"cation is to change the matrices into
scalars. The #exible beam has a model

E¸

L4w

Lx4
#o

L2w

Lt2
"d(x!0.2¸)d#d (x!0)8¸) f,

where w is the vibration displacement, x and t are spatial and temporal variables, and
¸ denotes the beam length. The disturbance and the absorber act at x

d
"0)2¸ and

x
f
"0)8¸ respectively. The feedback sensor collocates with the HVA at x

f
"0)8¸. Mode

functions (not normalized) are analytically available as

u
i
(x)"[cosh(j

i
x)!cos(j

i
x)]!k

i
[sinh(j

i
x)!sin(j

i
x)],

where k
i
"[cos(j

i
¸)#cosh(j

i
¸)]/[sin(j

i
¸)#sinh(j

i
¸)] is a constant depending on j

i
, the

ith root of frequency equation cos(j
i
¸) cosh(j

i
¸)#1"0. Eigenvalue j

i
also determines the

ith mode frequency u
i
"(j

i
¸)2JEI/o¸4. Without loss of generality, the simulation

assumes JEI/o¸4"1, and damping ratio of all modes to be 0)005.
A truncated model (to the "rst 5 modes) is adopted in the simulation, since the "fth and

the sixth mode peaks are signi"cantly lower than the "rst four peaks when the beam is
excited by the disturbance as shown in Figure 2 (without the HVA). Hence, the truncation is
reasonable. The mode frequencies are u

1
"15)4118, u

2
"49)9648, u

3
"104)2477,

u
4
"178)2697 and u

5
"272)0309 (rad/s) respectively.
Figure 2. Simulated performance of the proposed HVA.
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The simulated HVA synthesis the actuation force by A(s)"a
1
s#H(s)/N

f
(s)#a

3
/s

where A(s) is sort of a PID controller transfer function with C(s)"1. The closed-loop
transfer function of the #exible system is derived as

w
p

d
"

N
d
(s)B (s)

M(s)#(a
1
s3#a

3
s)N

f
(s)#s2H (s)

, (18)

where B (s)"s2#0)01s#400 contributes an attenuate valley at 20 rad/s while

M(s)"B(s)D
p
(s)#s2N

f
(s)(v

a
s#k

a
)"s12#m

1
s11#m

3
s10#2#m

10
s2#m

11
s#m

12
.

It is not di$cult to see m
12
"i<5

i/1
u2

i
. The prototype denominator of closed-loop

transfer function is selected as

E (s)"(s2#40s#400)
5
<
i/1

(s2#2u
i
s#u2

i
),

which implies e
12
"m

12
. This avoids the double integral a

4
/s2 while satisfying equation (12).

All roots of E(s) are critically damped to remove the mode peaks. The choice of a
1
, a

3
and

H(s) follows the procedures of Section 3 to match the denominator of equation (18) to E(s).
The matrix coe$cients of Section 3 are simpli"ed to scalars here to achieve the same objective.

The simulated performance of the HVA is shown in Figure 2. The closed-loop zeros and
poles contribute positively to absorb vibration in a wide frequency range, though only one
pair of closed-loop zeros is assigned at 20 rad/s. The scheme is proposed to apply n"2 or
3 HVAs to a #exible structure to attenuate m"5 or more modes. It requires fewer sensors,
saves on-line computations and avoids possible modal errors when compared with modal
feedback HVAs. Other simple HVAs are not able to achieve such an objective.
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